Уравнения продольного движения

Уравнения продольного движения в связанных осях для правой системы координат имеют вид (2.1), (2.2), (2.3):

(2.17)

В правых частях уравнений (2.17) стоят суммарные силы и моменты, действующие на фюзеляж вертолета. Они сложным и нелинейным образом зависят от многих переменных. Для установившегося режима полета их можно линеаризовать обычными методами, представив правые части в виде

(2.18)

Для упрощения написания частные производные будем обозначать следующим образом:

, и т. д.

Значения производных сил, отнесенные к массе вертолета M, и производных моментов, отнесенных к моменту инерции вертолета, будем обозначать тильдой:

, и т. д.

Систему (2.17) в линеаризованном виде с добавлением кинематического соотношения можно записать окончательно в виде

(2.19)

Продольное движение можно представить в виде блок-схемы (рис.2.3). Летчик, пилотируя вертолет, замыкает систему по нескольким контурам: угла и угловой скорости тангажа (W1, W2), продольного поступательного перемещения (W3) и вертикального поступательного перемещения (W4). При применении на вертолете автоматической системы повышения устойчивости некоторые контуры (показаны пунктиром) замыкаются дополнительно автоматической системой.

Систему (2.19) можно также представить в векторной форме

, (2.20)

где- вектор состояния;

- вектор управления;

; ;

A и B – соответственно матрицы 4×4 и 4×2.

Элементы матриц A и B определяются аэродинамическими характеристиками несущего винта и фюзеляжа вертолета и, вообще говоря, зависят от режима полета. Поскольку в большинстве своем эти элементы являются частными производными сил и моментов, действующих на вертолет по параметрам движения, их иногда называют производными устойчивости.

Рис. 2.3. Блок-схема продольного движения с летчиком в контуре управления

Решения матричного уравнения (2.20) при u≡0: определяют собой движение вертолета с фиксированным управлением, т.е. характеристики собственной устойчивости вертолета. Собственное движение вертолета с фиксированным управлением, очевидно, будет определяться корнями характеристического уравнения, которое можно записать в виде: или в развернутом виде

. (2.21)

Левая часть уравнения (2.21) представляет собой характеристический многочлен 4-го порядка относительно s, коэффициенты которого зависят от производных устойчивости.

Материалы о транспорте:

Схема системы впрыска
Топливная система Common Rail включает ступень подачи топлива под низким давлением и ступень подачи топлива под высоким давлением и ЭБУ. Рис.3 – Схема системы впрыска топлива Common Rail: 1 – топливн ...

Расчет численности производственных рабочих зоны ТО-1
ФДП=[ДК-(ДВ+ДПР+ДОО+ДДО+ДБ+ДГО)]×ТСМ-ДПР×tС (22) где ДК - количество календарных дней в году ДВ – количество выходных дней в году ДПР – количество праздников в году ДОО – количество дней ...

Кинематический расчет привода
Выбор электродвигателя Номинальный момент, Нм , где Ft – окружная сила на выходном валу привода, Н; D – диаметр ведомого звена, на котором приложена сила Ft. Среднеквадратичный момент, неизменяемый в ...

Навигация

Copyright © 2019 - All Rights Reserved - www.transpodepth.ru